Re: HSC 2012 Marathon
Let f(x,y) be a function such that f(xy) = f(x)+f(y)
Prove by induction that f(a^n) = n x f(a) for all n>=1 (NOTE: It's n times f(a) )
It looks hard but it is actually very easy.
I have a solution gotta latex it
<a href="http://www.codecogs.com/eqnedit.php?latex=\dpi{80} \textup{Given} ~f\left ( xy \right ) = f(x) @plus; f(y)\\~\textup{Prove~ by ~induction ~that}~ f(a^n) = nf(a) ~\textup{for ~all} ~n\geq 1\\\\ Step~1
rove ~true~for~ n=1\\LHS=a^n=a^1=a\\RHS = n*a=1*a=a\\\therefore~ True ~for~ n=1\\\\Step~2: Assume true for n=k\\i.e~f(a^k)=kf(a)\\\\ Step 3:~Prove~ true~ for~ n=k@plus;1\\i.e~f(a^{k@plus;1}) = (k@plus;1)f(a)\\LHS=f(a^{k@plus;1})=f(a^k*a)\\=f(a^k)@plus;f(a)\\=kf(a)@plus;f(a)\\=(k@plus;1)f(a)=RHS" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\dpi{80} \textup{Given} ~f\left ( xy \right ) = f(x) + f(y)\\~\textup{Prove~ by ~induction ~that}~ f(a^n) = nf(a) ~\textup{for ~all} ~n\geq 1\\\\ Step~1
rove ~true~for~ n=1\\LHS=a^n=a^1=a\\RHS = n*a=1*a=a\\\therefore~ True ~for~ n=1\\\\Step~2: Assume true for n=k\\i.e~f(a^k)=kf(a)\\\\ Step 3:~Prove~ true~ for~ n=k+1\\i.e~f(a^{k+1}) = (k+1)f(a)\\LHS=f(a^{k+1})=f(a^k*a)\\=f(a^k)+f(a)\\=kf(a)+f(a)\\=(k+1)f(a)=RHS" title="\dpi{80} \textup{Given} ~f\left ( xy \right ) = f(x) + f(y)\\~\textup{Prove~ by ~induction ~that}~ f(a^n) = nf(a) ~\textup{for ~all} ~n\geq 1\\\\ Step~1
rove ~true~for~ n=1\\LHS=a^n=a^1=a\\RHS = n*a=1*a=a\\\therefore~ True ~for~ n=1\\\\Step~2: Assume true for n=k\\i.e~f(a^k)=kf(a)\\\\ Step 3:~Prove~ true~ for~ n=k+1\\i.e~f(a^{k+1}) = (k+1)f(a)\\LHS=f(a^{k+1})=f(a^k*a)\\=f(a^k)+f(a)\\=kf(a)+f(a)\\=(k+1)f(a)=RHS" /></a>