• Congratulations to the Class of 2024 on your results!
    Let us know how you went here
    Got a question about your uni preferences? Ask us here

HSC 2012 MX1 Marathon #2 (archive) (1 Viewer)

Timske

Sequential
Joined
Nov 23, 2011
Messages
794
Gender
Male
HSC
2012
Uni Grad
2016
Re: HSC 2012 Marathon :)

nice your turn
 

Timske

Sequential
Joined
Nov 23, 2011
Messages
794
Gender
Male
HSC
2012
Uni Grad
2016
Re: HSC 2012 Marathon :)

Medium

EDIT: EASY
 
Joined
May 18, 2012
Messages
193
Gender
Undisclosed
HSC
N/A
Re: HSC 2012 Marathon :)

Medium

EDIT: EASY
Let f(x,y) be a function such that f(xy) = f(x)+f(y)

Prove by induction that f(a^n) = n x f(a) for all n>=1 (NOTE: It's n times f(a) )

It looks hard but it is actually very easy.
 
Last edited:

Timske

Sequential
Joined
Nov 23, 2011
Messages
794
Gender
Male
HSC
2012
Uni Grad
2016
Re: HSC 2012 Marathon :)

Ill try once im home
 

Nooblet94

Premium Member
Joined
Feb 5, 2011
Messages
1,044
Gender
Male
HSC
2012
Re: HSC 2012 Marathon :)

I didn't use a fraction substitution, nor the given result. I'll tex my working after I finish the second part. On second consideration, I guess I sort of did use a fraction...
Pt. 1
<a href="http://www.codecogs.com/eqnedit.php?latex=I= \int \frac{dx}{\sqrt{x}\sqrt{x@plus;1}}\\ $Let $u=2\sqrt{x} \Rightarrow du=\frac{dx}{\sqrt{x}}\\ x@plus;1=\frac{u^2}{4}@plus;1=\frac{1}{4}(u^2@plus;4)\\ ~\\ \therefore I=2\int \frac{du}{\sqrt{u^2@plus;4}}\\ =2\ln \left |u@plus;\sqrt{u^2@plus;4}\right |@plus;C\\ =2\ln \left |2\sqrt{x}@plus;\sqrt{4x@plus;4}\right |@plus;C\\ =2\ln \left |\sqrt{x}@plus;\sqrt{x@plus;1}\right | @plus;C~~$(Since $ \ln 2 $ is constant)$" target="_blank"><img src="http://latex.codecogs.com/gif.latex?I= \int \frac{dx}{\sqrt{x}\sqrt{x+1}}\\ $Let $u=2\sqrt{x} \Rightarrow du=\frac{dx}{\sqrt{x}}\\ x+1=\frac{u^2}{4}+1=\frac{1}{4}(u^2+4)\\ ~\\ \therefore I=2\int \frac{du}{\sqrt{u^2+4}}\\ =2\ln \left |u+\sqrt{u^2+4}\right |+C\\ =2\ln \left |2\sqrt{x}+\sqrt{4x+4}\right |+C\\ =2\ln \left |\sqrt{x}+\sqrt{x+1}\right | +C~~$(Since $ \ln 2 $ is constant)$" title="I= \int \frac{dx}{\sqrt{x}\sqrt{x+1}}\\ $Let $u=2\sqrt{x} \Rightarrow du=\frac{dx}{\sqrt{x}}\\ x+1=\frac{u^2}{4}+1=\frac{1}{4}(u^2+4)\\ ~\\ \therefore I=2\int \frac{du}{\sqrt{u^2+4}}\\ =2\ln \left |u+\sqrt{u^2+4}\right |+C\\ =2\ln \left |2\sqrt{x}+\sqrt{4x+4}\right |+C\\ =2\ln \left |\sqrt{x}+\sqrt{x+1}\right | +C~~$(Since $ \ln 2 $ is constant)$" /></a>

Pt. 2
<a href="http://www.codecogs.com/eqnedit.php?latex=\\ y=\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x@plus;1}}\\ y^2=\frac{1}{x}-\frac{2}{\sqrt{x(x@plus;1)}}@plus;\frac{1}{1@plus;x}\\ ~\\ V=\pi \int ^{\frac{9}{16}}_{\frac{1}{8}}y^2dx\\ =\pi \int^{\frac{9}{16}}_{\frac{1}{8}} \frac{1}{x}-\frac{2}{\sqrt{x(x@plus;1)}}@plus;\frac{1}{1@plus;x}\\ =\pi\left [ \right \ln(x(x@plus;1))-4\ln(\sqrt{x}@plus;\sqrt{x@plus;1})]^{\frac{9}{16}}_{\frac{1}{8}}\\ =\pi\left [ \ln\left ( \frac{\frac{225}{256}}{\frac{9}{64}} \right )-4\ln\left (\frac{\frac{1}{2\sqrt{2}}@plus;\frac{3}{2\sqrt{2}}}{\frac{3}{4}@plus;\frac{5}{4}} \right )\right ]\\ =\pi \left (\ln \frac{25}{4} -\ln4\right )\\ =\pi\ln\frac{25}{16}\\ \approx 1.402$ units$^3" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\\ y=\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\\ y^2=\frac{1}{x}-\frac{2}{\sqrt{x(x+1)}}+\frac{1}{1+x}\\ ~\\ V=\pi \int ^{\frac{9}{16}}_{\frac{1}{8}}y^2dx\\ =\pi \int^{\frac{9}{16}}_{\frac{1}{8}} \frac{1}{x}-\frac{2}{\sqrt{x(x+1)}}+\frac{1}{1+x}\\ =\pi\left [ \right \ln(x(x+1))-4\ln(\sqrt{x}+\sqrt{x+1})]^{\frac{9}{16}}_{\frac{1}{8}}\\ =\pi\left [ \ln\left ( \frac{\frac{225}{256}}{\frac{9}{64}} \right )-4\ln\left (\frac{\frac{1}{2\sqrt{2}}+\frac{3}{2\sqrt{2}}}{\frac{3}{4}+\frac{5}{4}} \right )\right ]\\ =\pi \left (\ln \frac{25}{4} -\ln4\right )\\ =\pi\ln\frac{25}{16}\\ \approx 1.402$ units$^3" title="\\ y=\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\\ y^2=\frac{1}{x}-\frac{2}{\sqrt{x(x+1)}}+\frac{1}{1+x}\\ ~\\ V=\pi \int ^{\frac{9}{16}}_{\frac{1}{8}}y^2dx\\ =\pi \int^{\frac{9}{16}}_{\frac{1}{8}} \frac{1}{x}-\frac{2}{\sqrt{x(x+1)}}+\frac{1}{1+x}\\ =\pi\left [ \right \ln(x(x+1))-4\ln(\sqrt{x}+\sqrt{x+1})]^{\frac{9}{16}}_{\frac{1}{8}}\\ =\pi\left [ \ln\left ( \frac{\frac{225}{256}}{\frac{9}{64}} \right )-4\ln\left (\frac{\frac{1}{2\sqrt{2}}+\frac{3}{2\sqrt{2}}}{\frac{3}{4}+\frac{5}{4}} \right )\right ]\\ =\pi \left (\ln \frac{25}{4} -\ln4\right )\\ =\pi\ln\frac{25}{16}\\ \approx 1.402$ units$^3" /></a>

No idea why the fraction in the fourth last line isn't displaying... Now, my question;
Untitled.png
 
Last edited:

Sanjeet

Member
Joined
Apr 20, 2011
Messages
239
Gender
Male
HSC
2012
Re: HSC 2012 Marathon :)

I didn't use a fraction substitution, nor the given result. I'll tex my working after I finish the second part. On second consideration, I guess I sort of did use a fraction...

<a href="http://www.codecogs.com/eqnedit.php?latex=I= \int \frac{dx}{\sqrt{x}\sqrt{x@plus;1}}\\ $Let $u=2\sqrt{x} \Rightarrow du=\frac{dx}{\sqrt{x}}\\ x@plus;1=\frac{u^2}{4}@plus;1=\frac{1}{4}(u^2@plus;4)\\ ~\\ \therefore I=2\int \frac{du}{\sqrt{u^2@plus;4}}\\ =2\ln \left |u@plus;\sqrt{u^2@plus;4}\right |@plus;C\\ =2\ln \left |2\sqrt{x}@plus;\sqrt{4x@plus;4}\right |@plus;C\\ =2\ln \left |\sqrt{x}@plus;\sqrt{x@plus;1}\right | @plus;C~~$(Since $ \ln 2 $ is constant)$" target="_blank"><img src="http://latex.codecogs.com/gif.latex?I= \int \frac{dx}{\sqrt{x}\sqrt{x+1}}\\ $Let $u=2\sqrt{x} \Rightarrow du=\frac{dx}{\sqrt{x}}\\ x+1=\frac{u^2}{4}+1=\frac{1}{4}(u^2+4)\\ ~\\ \therefore I=2\int \frac{du}{\sqrt{u^2+4}}\\ =2\ln \left |u+\sqrt{u^2+4}\right |+C\\ =2\ln \left |2\sqrt{x}+\sqrt{4x+4}\right |+C\\ =2\ln \left |\sqrt{x}+\sqrt{x+1}\right | +C~~$(Since $ \ln 2 $ is constant)$" title="I= \int \frac{dx}{\sqrt{x}\sqrt{x+1}}\\ $Let $u=2\sqrt{x} \Rightarrow du=\frac{dx}{\sqrt{x}}\\ x+1=\frac{u^2}{4}+1=\frac{1}{4}(u^2+4)\\ ~\\ \therefore I=2\int \frac{du}{\sqrt{u^2+4}}\\ =2\ln \left |u+\sqrt{u^2+4}\right |+C\\ =2\ln \left |2\sqrt{x}+\sqrt{4x+4}\right |+C\\ =2\ln \left |\sqrt{x}+\sqrt{x+1}\right | +C~~$(Since $ \ln 2 $ is constant)$" /></a>
An alternate solution with a different substitution:
 

SpiralFlex

Well-Known Member
Joined
Dec 18, 2010
Messages
6,960
Gender
Female
HSC
N/A
Re: HSC 2012 Marathon :)

The question said fraction substitution but oh well...I should have added part 3, then the fraction substitution would make more sense.

GROWL. I am off, keep this thread going. Be back at 6. *Assuming I don't get distracted*
 

Sanjeet

Member
Joined
Apr 20, 2011
Messages
239
Gender
Male
HSC
2012
Re: HSC 2012 Marathon :)

But the *hint* was a fraction.. it didn't say you had to use one
 

Timske

Sequential
Joined
Nov 23, 2011
Messages
794
Gender
Male
HSC
2012
Uni Grad
2016
Re: HSC 2012 Marathon :)

Let f(x,y) be a function such that f(xy) = f(x)+f(y)

Prove by induction that f(a^n) = n x f(a) for all n>=1 (NOTE: It's n times f(a) )

It looks hard but it is actually very easy.
I have a solution gotta latex it

<a href="http://www.codecogs.com/eqnedit.php?latex=\dpi{80} \textup{Given} ~f\left ( xy \right ) = f(x) @plus; f(y)\\~\textup{Prove~ by ~induction ~that}~ f(a^n) = nf(a) ~\textup{for ~all} ~n\geq 1\\\\ Step~1:prove ~true~for~ n=1\\LHS=a^n=a^1=a\\RHS = n*a=1*a=a\\\therefore~ True ~for~ n=1\\\\Step~2: Assume true for n=k\\i.e~f(a^k)=kf(a)\\\\ Step 3:~Prove~ true~ for~ n=k@plus;1\\i.e~f(a^{k@plus;1}) = (k@plus;1)f(a)\\LHS=f(a^{k@plus;1})=f(a^k*a)\\=f(a^k)@plus;f(a)\\=kf(a)@plus;f(a)\\=(k@plus;1)f(a)=RHS" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\dpi{80} \textup{Given} ~f\left ( xy \right ) = f(x) + f(y)\\~\textup{Prove~ by ~induction ~that}~ f(a^n) = nf(a) ~\textup{for ~all} ~n\geq 1\\\\ Step~1:prove ~true~for~ n=1\\LHS=a^n=a^1=a\\RHS = n*a=1*a=a\\\therefore~ True ~for~ n=1\\\\Step~2: Assume true for n=k\\i.e~f(a^k)=kf(a)\\\\ Step 3:~Prove~ true~ for~ n=k+1\\i.e~f(a^{k+1}) = (k+1)f(a)\\LHS=f(a^{k+1})=f(a^k*a)\\=f(a^k)+f(a)\\=kf(a)+f(a)\\=(k+1)f(a)=RHS" title="\dpi{80} \textup{Given} ~f\left ( xy \right ) = f(x) + f(y)\\~\textup{Prove~ by ~induction ~that}~ f(a^n) = nf(a) ~\textup{for ~all} ~n\geq 1\\\\ Step~1:prove ~true~for~ n=1\\LHS=a^n=a^1=a\\RHS = n*a=1*a=a\\\therefore~ True ~for~ n=1\\\\Step~2: Assume true for n=k\\i.e~f(a^k)=kf(a)\\\\ Step 3:~Prove~ true~ for~ n=k+1\\i.e~f(a^{k+1}) = (k+1)f(a)\\LHS=f(a^{k+1})=f(a^k*a)\\=f(a^k)+f(a)\\=kf(a)+f(a)\\=(k+1)f(a)=RHS" /></a>
 
Last edited:

Nooblet94

Premium Member
Joined
Feb 5, 2011
Messages
1,044
Gender
Male
HSC
2012
Re: HSC 2012 Marathon :)

The question said fraction substitution but oh well...I should have added part 3, then the fraction substitution would make more sense.

GROWL. I am off, keep this thread going. Be back at 6. *Assuming I don't get distracted*
I'm curious, what was the fraction you had in mind?
 

Timske

Sequential
Joined
Nov 23, 2011
Messages
794
Gender
Male
HSC
2012
Uni Grad
2016
Re: HSC 2012 Marathon :)

new Q spiral i want a hard one
 

barbernator

Active Member
Joined
Sep 13, 2010
Messages
1,439
Gender
Male
HSC
2012
Re: HSC 2012 Marathon :)

off the top of my head, the fraction could be x=1/u^2
 

Timske

Sequential
Joined
Nov 23, 2011
Messages
794
Gender
Male
HSC
2012
Uni Grad
2016
Re: HSC 2012 Marathon :)

barbs you got any hard questions
 

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top