Alternatively, consider:
\sum_{k=1}^{n} (a_kx+b_k)^2
(a_1^2+...+a_n^2)x^2+2(a_1b_1+...+a_nb_n)x+(b_1^2+...+b_n^2)
This has discriminant \leq0
4(a_1b_1+...+a_nb_n)^2-4(a_1^2+...+a_n^2)(b_1^2+...+b_n^2) \leq 0
(a_1b_1+...+a_nb_n)^2 \leq (a_1^2+...+a_n^2)(b_1^2+...+b_n^2)
Let a_k=\sqrt{x_k}...