• Congratulations to the Class of 2024 on your results!
    Let us know how you went here
    Got a question about your uni preferences? Ask us here

Search results

  1. untouchablecuz

    one music taste a deterrent?

    ok lets stop being amatuer Freud's here how often would music even be a subject of discussion?
  2. untouchablecuz

    Complex

    \\\frac{\gamma -\beta }{\gamma -\alpha }=cis(\frac{\pi}{3}) \ (*) $ and $\frac{\gamma -\alpha }{\gamma -\beta }=cis(-\frac{\pi}{3}) \ (**)\\(*)+(**),\\\frac{\gamma -\beta }{\gamma -\alpha }+\frac{\gamma -\alpha }{\gamma -\beta }=cis(\frac{\pi}{3})+cis(-\frac{\pi}{3})=2\Re...
  3. untouchablecuz

    Complex

    =$
  4. untouchablecuz

    Complex

    \\$Using the fact that $|x|^2=x\overline{x}, $ $x$ complex$...
  5. untouchablecuz

    Complex

    \\a+ib=\frac{(x+i)^2}{2x-i}\\|a+ib|=\left|\frac{(x+i)^2}{2x-i}\right|=\frac{|(x+i)^2|}{|2x-i|}=\frac{|x+i|^2}{|2x-i|}\\a^2+b^2=\frac{(x^2+1)^2}{4x^2+1}
  6. untouchablecuz

    Complex

    \\LHS\\=z_1^2+z_2^2\\=\left(z_2\times cis(\frac{\pi}{3})\right)^2+z_2^2, $ since $z_1=z_2\times cis(\frac{\pi}{3})\\=z_2^2\times(cis(\frac{2\pi}{3})+1)\\=z_2^2 \times(\cos \frac{2\pi}{3} + i\sin \frac{2\pi}{3}+1)\\=z_2^2\times(\frac{1}{2}+i\frac{\sqrt{3}}{2})\\=z_2 \times z_2\times...
  7. untouchablecuz

    Complex

    \\z_{1}=z_{2}\times cis(\frac{\pi}{3})\\\frac{z_1}{z_2}=cis(\frac{\pi}{3}) \ (*) $ and $ \frac{z_2}{z_1}=cis(-\frac{\pi}{3}) \ (**)\\(*)+(**),\\\frac{z_1}{z_2}+\frac{z_2}{z_1}=cis(\frac{\pi}{3})+cis(-\frac{\pi}{3})=2\Re \left(cis(\frac{\pi}{3})\right)=1\\$Multiply through by...
  8. untouchablecuz

    one music taste a deterrent?

    you're all retarded each to their own, why does it bother you?
  9. untouchablecuz

    cyclic quads

    yep and since 3 points define a UNIQUE circle, the 4th point of a quad must lie on this circle to be considered cyclic
  10. untouchablecuz

    cyclic quads

    listen to this
  11. untouchablecuz

    cyclic quads

    you will find that if the 4th point does not lie on the circumference, then the circle will not (and cannot) exhibit properties of a cyclic quadrilateral
  12. untouchablecuz

    Complex Numbers Q

    \\z^2=a+ib\\|z^2|=|a+ib|\\|z|^2=|a+ib|\\(\sqrt{x^2+y^2})^2=\sqrt{a^2+b^2}\\x^2+y^2=\sqrt{a^2+b^2} \ (*)\\$Now, $\\(x+iy)^2=a+ib\\(x^2-y^2)+2ixy=a+ib\\$Equating $\Re (z),\\x^2-y^2=a\Rightarrow y^2=x^2-a \ (**)\\$Sub $(**) $ in $(*),\\2x^2=a+\sqrt{a^2+b^2} edit: beaten by the Treb Man
  13. untouchablecuz

    Complex Numbers Q

    \\\frac{1}{1+z}, $ letting $z=\cos \theta+i \sin \theta\\=\frac{1}{1+\cos \theta +i\sin \theta}\\=\frac{1}{1+(2\cos^2 \frac{\theta}{2}-1)+2i\sin \frac{\theta}{2} \cos \frac{\theta}{2}}\\=\frac{1}{2\cos^2 \frac{\theta}{2}+2i\sin \frac{\theta}{2} \cos \frac{\theta}{2}}\\=\frac{1}{2\cos...
  14. untouchablecuz

    Complex Numbers Q

    \\$Let $z=\cos \theta +i\sin \theta $ and $t=\tan \frac{\theta}{2}:\\\frac{1}{1+z}\\=\frac{1}{1+\cos \theta+i\sin \theta}\\=\frac{1}{1+\frac{1-t^2}{1+t^2}+i\frac{2t}{1+t^2}}\\=\frac{1}{2} \times\frac{1+t^2}{1+it}\\=\frac{1}{2} \times\frac{(1+it)(1-it)}{1+it}\\=\frac{1}{2}...
  15. untouchablecuz

    Imaginay Nos

    polynomial division should be in Polynomials it works in exactly the same way as division with real factors e.g. x^3-0x^2+2x+1=0 divide by x-3 divide by x-(1+i) letting x-(1+i)=(x-a) and THEN dividing may be of help to you conceptually
  16. untouchablecuz

    Imaginay Nos

    g-g-g-g-g-g-g-geniusssssssssssssssssss
  17. untouchablecuz

    Imaginay Nos

    \\Z=\sqrt\frac{1+z}{1-z}\Rightarrow z=\frac{Z^2-1}{Z^2+1}\\$If $z $ lies on the circle $x^2+y^2=1, $ then, $|z|=1\\\therefore |z|=\left|\frac{Z^2-1}{Z^2+1}\right|=1\Rightarrow |Z^2-1|=|Z^2+1|\\$Let...
  18. untouchablecuz

    Imaginay Nos

    \\P: \ z=a+ib \ (*)\\Q: \ \frac{1}{z-3}+\frac{17}{3}=X+iY=Z \ (**)\\$From $ (**),\\X=\frac{a-3}{(a-3)^2+b^2}+\frac{17}{3} $ and $ Y=-\frac{b}{(a-3)^2+b^2}\\$But $ |z-3|=3\Rightarrow (a-3)^2+b^2=9 \ (***)\\\therefore X=\frac{a-3}{9}+\frac{17}{3} $ and $ Y=-\frac{b}{9}\\$Rearranging and squaring...
  19. untouchablecuz

    Imaginay Nos

    \\Z=\sqrt\frac{1+z}{1-z}\Rightarrow z=\frac{Z^2-1}{Z^2+1}\\$If $z $ lies on the circle $x^2+y^2=1, $ then, $|z|=1\\\therefore |z|=\left|\frac{Z^2-1}{Z^2+1}\right|=1\Rightarrow |Z^2-1|=|Z^2+1|\\ not 100% sure how to proceed
  20. untouchablecuz

    Imaginay Nos

    \\Z=\frac{2+z}{2-z}\\z=2 \times \frac{Z-1}{Z+1}\\$Let $Z=x+iy,\\z=2 \times \frac{x+iy-1}{x+iy+1}=2 \times \frac{(x^2+y^2-1)+i(2y)}{(x+1)^2+y^2}\\$If $z $ describes the $y$-axis, then $ \Re (z)=0\\\therefore x^2+y^2-1=0\Rightarrow x^2+y^2=1\\$Hence the point $Z $ describes a circle with radius $1...
Top