Re: HSC 2014 4U Marathon
$Using de Moivre's theorem
(\cos \theta + i\sin\theta)^n = \cos(n\theta) + i\sin(n\theta),
$show that for positive, even integers $ n$,
\cos(n\theta) = \sum_{k=0}^{n/2} \binom{n}{2k} (-1)^k\sin^{n-2k}\theta\cos^{2k}\theta $ \\and derive a similar expression for $...