Re: MX2 Integration Marathon
I=\int_0^{\pi/2}x\cot xdx
=\int_0^{\pi/2}x(\ln\sin x)^\prime dx=-\int_0^{\pi/2}\ln\sin xdx
$Let$ x=\frac{\pi }{2}-u, $we have$
I=-\int_0^{\pi/2}\ln\cos udu
$Therefore$
2I=-\int_0^{\pi/2}(\ln\sin x+\ln\cos x)dx
=\frac\pi2\ln2-\int_0^{\pi/2}\ln\sin2xdx
$I just...