MedVision ad

Search results

  1. Sy123

    HSC General Maths Marathon

    $A line has$ \ x \ $and$ \ y \ $intercepts$ \ \ p \ $and$ \ q \ \ $respectively$ $What is the gradient of this line?$
  2. Sy123

    HSC General Maths Marathon

    Don't general maths students do algebra and making variables a subject sort of stuff
  3. Sy123

    HSC 2013 MX2 Marathon (archive)

    Re: HSC 2013 4U Marathon $Let$ \ x> 1 $Evaluate$ \frac{x}{x+1} + \frac{x^2}{(1+x)(1+x^2)} + \frac{x^4}{(1+x)(1+x^2)(1+x^4)} + \dots
  4. Sy123

    HSC General Maths Marathon

    $i) Show that if$ \ \ ax^2 + bx + c = 0 \ \Rightarrow \ \ \left(x+ \frac{b}{2a} \right)^2 + \frac{c}{a} = \frac{b^2}{4a^2} $ii) Hence prove by making$ \ \ x \ \ $the subject$ x= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
  5. Sy123

    HSC 2013 MX2 Marathon (archive)

    Re: HSC 2013 4U Marathon First, we will prove this is true for distinct a,b,c $Without loss of generality, take$ \ \ a>b>c a(a-b)(a-c) + b(b-a)(b-c) + c(c-a)(c-b) = (a-b)(a-c)(b-c) \left(\frac{a}{b-c} - \frac{b}{a-c} + \frac{c}{a-b} \right) $The multiplier at the front is positive due...
  6. Sy123

    HSC 2013 MX2 Marathon (archive)

    Re: HSC 2013 4U Marathon $Let$ \ \ f(x) \ \ $be a differentiable function that satisfies$ f(x+y) = f(x) f(y) \ \ $for all$ \ \ x,y \in \mathbb{R} f'(0) = 1 $Find$ \ \ f(x)
  7. Sy123

    HSC 2013-14 MX1 Marathon (archive)

    Re: HSC 2013 3U Marathon Thread Yep
  8. Sy123

    HSC 2013 MX2 Marathon (archive)

    Re: HSC 2013 4U Marathon Why don't we just add 2014 posts on here I think its better to have a megathread rather than individual threads for each year Can someone post a question
  9. Sy123

    HSC 2013-14 MX1 Marathon (archive)

    Re: HSC 2013 3U Marathon Thread $Find$ \sum_{k=0}^m \binom{j}{k} \binom{i}{m-k}
  10. Sy123

    HSC 2013 MX2 Marathon (archive)

    Re: HSC 2013 4U Marathon $Let$ \ \ \lfloor z \rfloor \ \ $be the greatest integer less than or equal to$ \ z $That is$ \ \ \lfloor \pi \rfloor = 3 $Prove that$ \int_1^a \lfloor x \rfloor f'(x) \ dx = \lfloor a \rfloor f(a) - (f(1) + f(2) + \dots + f(\lfloor a \rfloor) )
  11. Sy123

    HSC 2013 Maths Marathon (archive)

    Re: HSC 2013 2U Marathon $Consider the graph of$ \ \ y= \frac{1}{x} $i) Using the trapezium rule for$ \ \ n+1 \ \ $function values$ \ \ x=n \ \ $to$ \ \ x=2n $Show that$ \frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n} > \ln 2 + \frac{3}{2n} \ \ \ \fbox{3} $ii) State a way to...
  12. Sy123

    HSC 2013 Maths Marathon (archive)

    Re: HSC 2013 2U Marathon Its like saying \frac{d}{dx} \sin x = \cos x THEREFORE \int \cos x = \sin x + c we are just reversing what we've done, in this case I re-arranged the integrals \frac{d}{dx} x\ln x = \ln x + 1 x\ln x = \int (\ln x + 1) \ dx x \ln x = \int \ln x \ dx + \int 1...
  13. Sy123

    HSC 2013 Maths Marathon (archive)

    Re: HSC 2013 2U Marathon Do I really need to say, provide proof
  14. Sy123

    HSC 2013 Maths Marathon (archive)

    Re: HSC 2013 2U Marathon $By making use of differentiation by first principles of$ \ \sin x $EVALUATE$ \lim_{h\to 0} \frac{\sin h}{h}
  15. Sy123

    HSC 2013 Maths Marathon (archive)

    Re: HSC 2013 2U Marathon I know you've memorised the integral of ln x and you just want to take every opportunity to show off your supreme memorisation power
  16. Sy123

    HSC 2013 Maths Marathon (archive)

    Re: HSC 2013 2U Marathon The proper answer is: \frac{d}{dx} x\ln x = \ln x + 1 Integrate both sides \therefore \ x\ln x = \int \ln x \ dx + \int 1 \ dx \therefore \ \ \int \ln x \ dx = x\ln x- x + c Then you just sub in values
  17. Sy123

    HSC 2013 Maths Marathon (archive)

    Re: HSC 2013 2U Marathon Bumping for more exposure
  18. Sy123

    HSC 2013 Maths Marathon (archive)

    Re: HSC 2013 2U Marathon nah mate just stick to your \int_1^2 2x \ dx
  19. Sy123

    Induction inquiry

    Differentiating does not necessarily hold the inequality Counter example: 2x + 100 > 5x - 100 (for certain values of x) but 2 > 5 is not true for any
  20. Sy123

    Maths derp moments

    Unfortunately there have been multiple occasions where I'd do the exam twice since I'd finish early And I'd make the same silly mistake twice =)
Top