Re: HSC 2013 4U Marathon
First, we will prove this is true for distinct a,b,c
$Without loss of generality, take$ \ \ a>b>c
a(a-b)(a-c) + b(b-a)(b-c) + c(c-a)(c-b) =
(a-b)(a-c)(b-c) \left(\frac{a}{b-c} - \frac{b}{a-c} + \frac{c}{a-b} \right)
$The multiplier at the front is positive due...