Re: First Year Uni Calculus Marathon
J(t):=\int_0^\pi \frac{\log(1+t\cos(x))}{\cos(x)}\, dx\\ \\ = J(0)+\int_0^t J'(s)\, ds\\ \\ = \int_0^t \left(\int_0^\pi \frac{d\phi}{1+s\cos(\phi)}\right)\, ds\\ \\ = \int_0^t \frac{\pi}{\sqrt{1-s^2}}\, ds\\ \\ = \pi \sin^{-1}(t) $ for $t\in [0,1].\\ \\...