Stan.. said:
I = Int ( e^ax cosbx ) dx
euler's formula way:
I = Int ( e^ax cosbx ) dx
= Re( Int ( e^ax (cosbx + i sin bx) ) dx)
= Re( Int ( e^(ax + ibx) dx)
= Re( Int ( e^(a+ib)x dx)
= Re( e^(a+ib)x /(a+ib))
= Re( e^ax (cosbx + i sin bx)/(a+ib))
= e^ax / (a^2 + b^2) * (a cosbx + b sin bx)
the by parts way:
I = Int ( e^ax cosbx ) dx
= e^ax cosbx / a - -b/a Int ( e^ax sinbx ) dx
= e^ax cosbx / a + b/a [ e^ax sinbx /a - b/a Int ( e^ax cosbx ) dx ]
= e^ax cosbx / a + b/a [ e^ax sinbx /a - b/a I ]
= e^ax cosbx / a + b/a^2 e^ax sinbx - b^2/a^2 I
I (1 + b^2/a^2) = e^ax cosbx / a + b/a^2 e^ax sinbx
I (a^2 + b^2) = e^ax (a cosbx + b sinbx)
I = e^ax (a cosbx + b sinbx) / (a^2 + b^2)