f(x)=e^2x+ae^x+2x
f'(x)=2e^2x+ae^x+2
Since extreme values occur when f'(x)=0,
2e^2x+ae^x+2=0
Let e^x=t
2t^2+at+2=0
Now, for f(x) to have both a relative maximum and minimum value, there must be 2 solutions to f'(x) that are positive[since t=e^x>0 for all real x]
Hence,
From Discriminant>0[since there are 2 solutions], a^2-16>0
Let the roots of f'(x) be e^x1 and e^x2, where x1 and x2 are the x-coordinates of the local extrema
e^x1+e^x2=-a/2>0
[e^x1][e^x2]=e^[x1+x2]=1
x1+x2=0
Since -a/2>0 and a^2-16>0,
a<-4
Therefore,
f(x1)+f(x2)=(e^2x1+ae^x1+2x1)+(e^2x2+ae^x2+2x2)
=(e^x1+e^x2)^2-2[e^x1][e^x2]+a(e^x1+ex2)+2(x1+x2)
=[-a/2]^2-2(1)+a(-a/2)+2(0)
=-0.25a^2-2=-11
a^2=36
a=6,-6
However, from a<-4,
a=6 is extraneous, and thus
a=-6