• We are looking for markers for this year's BoS Maths Trials!
    Let us know before 31 August, see this thread for details

HSC 2013 MX2 Marathon (archive) (1 Viewer)

Status
Not open for further replies.

deswa1

Well-Known Member
Joined
Jul 12, 2011
Messages
2,251
Gender
Male
HSC
2012
Re: HSC 2013 4U Marathon

0, since if all the coefficients are real, the roots must occur in conjugate pairs, therefore the arguments will be in opposite in sign?

edit: oh right it can also be pi as well if both roots are real but one's negative and other's positive.
but he said in terms of a, b, c
0(a+b+c-3ab +2(a^2)b - c^3)=0 (that's in terms of a,b,c)
 

Carrotsticks

Retired
Joined
Jun 29, 2009
Messages
9,467
Gender
Undisclosed
HSC
N/A
Re: HSC 2013 4U Marathon

0, since if all the coefficients are real, the roots must occur in conjugate pairs, therefore the arguments will be in opposite in sign?

edit: oh right it can also be pi as well
How can it be pi as well?
 

SpiralFlex

Well-Known Member
Joined
Dec 18, 2010
Messages
6,954
Gender
Female
HSC
N/A
Re: HSC 2013 4U Marathon

I'm impressed that the advertisement of this thread worked to a degree.
 

Sy123

This too shall pass
Joined
Nov 6, 2011
Messages
3,725
Gender
Male
HSC
2013
Re: HSC 2013 4U Marathon

damn I think I missed all the shortcuts :(
Nice work, alternatively while we can do it your way, do you see how you needed to find

And sum of them two at a time, then three at a time -> why not find a polynomial with roots 1/alpha 1/beta 1/gamma
And it actually isn't time consuming at all, in order to find a polynomial with those roots, you must 'reverse' the co-efficients
So a poly with roots 1/a 1/b 1/c
would be:

2x^3+3x^2+0x+1 = 0

So then you could find sum of them one at a time, two at a time and three by just using co-efficients instead of finding common denominator and going through that torturous process :p

And you could do the same for sum of squares and stuff as well.
 
Last edited:

Immortalp00n

Member
Joined
Dec 27, 2012
Messages
272
Gender
Undisclosed
HSC
2009
Re: HSC 2013 4U Marathon

i came to this thread for d babes as per sy's sig
where them bad bitches at?
 

Sy123

This too shall pass
Joined
Nov 6, 2011
Messages
3,725
Gender
Male
HSC
2013
Re: HSC 2013 4U Marathon

i came to this thread for d babes as per sy's sig
where them bad bitches at?
Err, not sure what you're talking about :p

Only maths here, if that's what you're talking about.
 

GoldyOrNugget

Señor Member
Joined
Jul 14, 2012
Messages
577
Gender
Male
HSC
2012
Re: HSC 2013 4U Marathon

I was playing around with these sorts of problems on the bus the other day, but I ended up confusing myself and didn't get very far.

Say you had a polynomial with roots and you want to find a polynomial with roots (Sy's question would be a special case of this where ).

You can find an equation with these roots by replacing every instance of in the polynomial with (this is an interesting property to investigate/prove). In some cases, that equation can be algebraically manipulated into a polynomial without creating any new roots. This is why the trick of inverting coefficients works for -- it's a shortcut to replacing all terms with and multiplying out the resulting fractions.

When isn't monotonic (meaning is not a function), it still works; I'm pretty sure you can choose a maximal interval on its domain over which it's monotonic (probably the wrong terminology) and use that for the inverse, because the only necessity is that . Also, I'm not convinced that all equations generated in this manner can be manipulated into polynomials without creating new roots (for example, I had some trouble doing it with Sy's question, but I could have just messed up the algebra). Perhaps someone else will have more luck investigating this?
 
Status
Not open for further replies.

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top