Zen2613
Member
Re: HSC 2016 4U Marathon - Advanced Level
I think the other guy's proof is valid. You have A^2 = 2X, where A and X are both integers. Now consider if A is odd, i.e A = 2n+1 then A^2 = 4n^2 + 4n + 1 = 2(2n^2 + 2n) + 2 = 2m + 1 (n, m are integers). Therefore if A is odd, the A^2 is odd which is a contradiction, so A can't odd. If A is even then A = 2n, then A^2 = 2(2n^2) = 2m i.e A^2 is even if A is even. This works and therefore A must be even QED. No ? The only other possibility is if A is not an integer, but it is stated in the first place that it is, so the proof holds.If you noticed I commented on the unedited version of his post. The unedited one had Which wouldnt allow A to be a multiple of 2 for all real values of the RHS.