(b) ∫<sub>m</sub><sup>m+1</sup>[1/t]dt>1/(m+1)
∫<sub>m+1</sub><sup>m+2</sup>[1/t]dt>1/(m+2)
......
∫<sub>2m-1</sub><sup>2m</sup>[1/t]dt>1/(2m)
∫<sub>m</sub><sup>m+1</sup>[1/t]dt +∫<sub>m+1</sub><sup>m+2</sup>[1/t]dt+....+∫<sub>2m-1</sub><sup>2m</sup>[1/t]dt=log[(m+1)/m]+log[(m+2)/(m+1)]+....+log[2m/(2m-1)]
=log[2m/m]=log2
Also, as proven earlier,
1/(m+1)+1/(m+2)+...+1/(2m)>=37/60
∫<sub>m</sub><sup>m+1</sup>[1/t]dt +∫<sub>m+1</sub><sup>m+2</sup>[1/t]dt+....+∫<sub>2m-1</sub><sup>2m</sup>[1/t]dt>1/(m+1)+1/(m+2)+...+1/(2m)>=37/60
Thus, log2>37/60