$Let $ Q $ have co-ordinates $ (x,y).\\ $Since $ F $ divides $ PQ $ into the ratio $ t:\frac{1}{t}, $ we get that, in $ x,\\ 0 = \dfrac{tx+\frac{1}{t}\cdot 2t}{t+\frac{1}{t}} \Rightarrow tx +2 =0 \Rightarrow x = -\dfrac{2}{t}. \\ $In $y, 1 = \dfrac{ty+\frac{1}{t}\cdot t^2}{t+\frac{1}{t}}...